Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary
نویسندگان
چکیده
The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals a ≈72-km-thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.
منابع مشابه
Variation of Lithosphere-Asthenosphere boundary beneath Iran by using S Receiver function
The current geological and tectonic setting of Iran is due to the ongoing convergence between the Arabian and Eurasian Plates, which resulted in the formation of the Iranian plateau, mountain building, extensive deformation and seismicity. The Iranian plateau is characterized by various domains including the continental collision and the oceanic plate seduction. Based on S receiver functions ar...
متن کاملImaging Pacific lithosphere seismic discontinuities—Insights from SS precursor modeling
Oceanic lithosphere provides an ideal location to decipher the nature of the lithosphere-asthenosphere system which is vital to our understanding of plate tectonics. It is well established that oceanic lithosphere cools, thickens, and subsides as it ages according to the conductive cooling models. Yet this simple realization fails to explain various observations. For example, old oceanic lithos...
متن کاملEvidence for thin oceanic crust on the extinct Aegir Ridge, Norwegian Basin, NE Atlantic derived from satellite gravity inversion
[1] Satellite gravity inversion incorporating a lithosphere thermal gravity correction has been used to map crustal thickness and lithosphere thinning factor for the NE Atlantic. Predicted oceanic crustal thicknesses in the Norwegian Basin are between 4 and 7 km on the extinct Aegir Ridge, increasing to 9 – 14 km at the margins, consistent with volcanic margin continental breakup at the end of ...
متن کاملSeismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates.
The mobility of the lithosphere over a weaker asthenosphere constitutes the essential element of plate tectonics, and thus the understanding of the processes at the lithosphere-asthenosphere boundary (LAB) is fundamental to understand how our planet works. It is especially so for oceanic plates because their relatively simple creation and evolution should enable easy elucidation of the LAB. Dat...
متن کاملA global view of the lithosphere-asthenosphere boundary.
The lithosphere-asthenosphere boundary divides the rigid lid from the weaker mantle and is fundamental in plate tectonics. However, its depth and defining mechanism are not well known. We analyzed 15 years of global seismic data using P-to-S (Ps) converted phases and imaged an interface that correlates with tectonic environment, varying from 95 +/- 4 kilometers beneath Precambrian shields and p...
متن کامل